Université Pierre et Marie Curie Licence de Sciences et Technologie Cycle d'intégration L1

LP102 : Physique du mouvement Année 2004-2005

Examen de la session de juin 9 juin 2005

Durée: 2h.

L'usage des documents et calculatrices est interdit.

On accordera la plus grande attention à la rédaction et à l'argumentation des réponses.

Lisez attentivement tout le texte de l'examen avant de commencer, ne vous précipitez pas, mais ne perdez pas de temps.

1 Question de cours : mouvement d'un satellite

Une planète de masse M et de centre O, supposée parfaitement sphérique, exerce une force gravitationnelle \overrightarrow{F} sur un satellite S de masse m ($m \ll M$) en orbite fermée sur la trajectoire C. Dans le référentiel de la planète, la position du satellite est repérée à l'instant t par le vecteur $\overrightarrow{r}(t) = \overrightarrow{OS}(t) = r \overrightarrow{u_r}$. On négligera toute influence extérieure aux deux corps et en particulier leur mouvement autour du soleil.

- 1. Exprimer la force de gravitation \overrightarrow{F} agissant sur le satellite. Qu'est-ce qui indique dans cette expression que la force est
 - (a) centrale et
 - (b) attractive?
- 2. De façon générale, quelle est la nature de la courbe C (1^{re} loi de Kepler)?
- 3. Écrire l'accélération \overrightarrow{a} du satellite. Comment dépend-elle de la masse du satellite?
- 4. Calculer le moment $\overrightarrow{\mathcal{M}_O}$ de la force \overrightarrow{F} par rapport à O.
- 5. Démontrer que le moment cinétique $\overrightarrow{L_O}$ du satellite est constant et que le mouvement de celui-ci est nécessairement plan. On appelle $\overrightarrow{u_z}$ la direction de $\overrightarrow{L_O}$. Exprimer $\overrightarrow{L_O}$ en coordonnées cylindriques.
- 6. Rappeler la relation entre la période et la taille de l'orbite? (3e loi de Kepler).

2 Modèle simplifié du saut d'une grenouille

Pour sauter, une grenouille détend brusquement ses pattes arrière et, s'appuyant sur le sol, se propulse ainsi vers le haut. Nous allons étudier dans ce problème un modèle simplifié à l'extrême de ce saut.

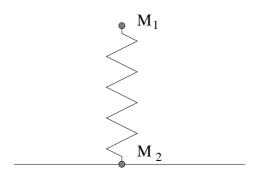


FIG. 1 – Le modèle de la grenouille : deux points matériels espacés par un ressort.

Considérons donc le système que nous persisterons dans la suite à appeler la grenouille formé de deux points matériels M_1 et M_2 , de masses m_1 et m_2 reliés par un ressort de masse négligeable de longueur à vide ℓ_0 et de raideur k: voir figure 1. M_1 représente le haut du corps de la grenouille et M_2 ses pattes. On pourra appeler $M=m_1+m_2$ la masse totale du système.

Le point M_1 subit son poids et la force élastique du ressort $\overrightarrow{T_1}$ et le point M_2 subit son poids, la force élastique du ressort $\overrightarrow{T_2}$, et éventuellement la réaction du sol \overrightarrow{R} .

- 1. Relier les forces $\overrightarrow{T_1}$ et $\overrightarrow{T_2}$ qu'exercent M_1 et M_2 sur le ressort aux forces $\overrightarrow{T_1}$ et $\overrightarrow{T_2}$.
- 2. Si le ressort est de masse négligeable (m=0), subit-il d'autres forces que $\overrightarrow{T_1}$ et $\overrightarrow{T_2}$?
- 3. En déduire que $\overrightarrow{T}_2 = -\overrightarrow{T}_1$.

On prend un système de coordonnées $\{Oxyz\}$ d'origine O tel qu'initialement le point matériel M_2 est en O, et d'axe (Oz) vertical. On dote cet axe d'un vecteur unitaire $\overrightarrow{u_z}$ dirigé vers le haut. On prendra donc $\overrightarrow{g} = -g \overrightarrow{u_z} \ (g=10 \text{ m} \cdot \text{s}^{-2})$ et $\overrightarrow{R} = R \overrightarrow{u_z}$. L'altitude de M_1 est z_1 , celle de M_2 est z_2

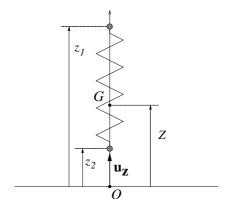


Fig. 2 – définition des altitudes z_1 et z_2 . Z est l'altitude du centre de masse.

2.1 Grenouille au sol

Lorsque la grenouille est au sol, l'altitude du point M_2 est nulle et la réaction du sol R est en général différente de 0.

2.1.1 Grenouille au repos

Supposons tout d'abord qu'on n'exerce aucune action extérieure sur le système.

- 4. Exprimer l'allongement du ressort en fonction de z_1 et ℓ_0 .
- 5. Calculer l'altitude de M_1 au repos. On notera l_1 cette valeur.
- 6. Que vaut R?

2.1.2 Détente

Lorsque la grenouille s'appête à sauter, elle bande ses muscles. On modélise cela en plaçant M_1 à une altitude initiale (t=0) $z_0=\ell_1-\Delta\ell$ où $\Delta\ell$ est positif (figure 3), avec une vitesse initiale v_0 nulle. Lorsqu'elle se détend, la grenouille ne décolle pas tout de suite : z_2 reste d'abord nul.

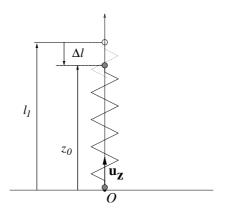


Fig. 3 – État initial avant le saut : le ressort est comprimé de $\Delta \ell$.

Les équations se simplifient si on introduit $z_1' = z_1 - \ell_1$.

- 7. Écrire la nouvelle équation différentielle pour z'_1 . Il s'agit d'un oscillateur harmonique : préciser sa pulsation.
- 8. Résoudre l'équation et donner la loi horaire $z'_1(t)$ de l'altitude de M_1 .
- 9. Écrire la relation fondamentale de la dynamique pour M_2 avec M_2 immobile. En déduire la loi de variation de R en fonction du temps. Donner sur un graphique l'allure de R(t).
- 10. Montrer que si $\Delta \ell$ est suffisant, R peut devenir négative.

2.2 Décollage de la grenouille

En fait, la grenouille ne s'agrippant pas au sol, la réaction R ne peut pas devenir négative, et le point M_2 décolle du sol lorsque R=0, la réaction restant ensuite nulle.

- 11. Réexprimer l'allongement du ressort en fonction de z_1 , z_2 et ℓ_0 .
- 12. Montrer alors que les équations différentielles satisfaites par z_1' et z_2 sont :

$$m_1 \frac{d^2 z_1'}{dt^2} = -k \left(z_1' - z_2 \right) \tag{1}$$

$$m_2 \frac{d^2 z_2}{dt^2} = +k \left(z_1' - z_2\right) - Mg \tag{2}$$

- 13. Montrer qu'alors le centre de masse a un mouvement de chute libre.
- 14. Montrer de même qu'on obtient pour $z=z_1'-z_2$ une équation d'oscillateur harmonique. Quelle est sa pulsation?