Université Pierre et Marie Curie DEUG MIAS 1

Examen de mathématiques 1 Septembre 2002

Corrigé de l'examen et remarques

Questions de cours

On trouvera bien sûr la réponse et des détails dans le cours, mais voici quelques remarques.

1) Donner la définition de la borne supérieure dans **R** d'une partie A non vide de **R**.

On peut donner la définition de deux façons : en français

La borne supérieure S d'un sous-ensemble non vide A de \mathbf{R} est, s'il existe, le plus petit des majorants.

en langage quantifié

Le réel *S* est la borne supérieure d'un sous-ensemble non vide *A* de **R** si $\forall x \in A, x \leq S$ et $\forall \varepsilon > 0, \exists x \in A, S - \varepsilon < x$

Un théorème du cours dit que si A est majoré, la borne supérieure de A existe. C'est une propriété de \mathbf{R} . Par exemple, l'ensemble des rationnels \mathbf{Q} ne satisfait pas cette propriété.

Erreurs fréquentes

- > confondre majorant et borne supérieure,
- confondre borne supérieure et plus grand élément ou affirmer que la borne supérieure appartient à A. S'il y a un plus grand élément, c'est la borne supérieure, si la borne supérieure appartient à A c'est le plus grand élément, mais (exemple classique) soit A l'ensemble des rationnels positifs r tels que $r^2 < 2$, cet ensemble a (dans \mathbf{R}) une borne supérieure : $\sqrt{2}$ et pas de plus grand élément ($\sqrt{2}$ est irrationnel et n'appartient pas à A),
- > des quantifications fantaisistes.

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

La partie « les réels » du module « nombres réels, suites et fonctions », précisément http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lesreels/2 3.htm.

2) Donner la définition d'une suite réelle $(u_n)_{n\in\mathbb{N}}$ convergente.

Définition

Soit (u_n) une suite réelle ; on dit que (u_n) est convergente (ou converge) s'il existe un réel L tel que (u_n) converge vers L.

Pour obtenir la note maximale il fallait

> soit donner la définition en langage quantifié

$$\exists L \in \mathbf{R} , \forall \varepsilon > 0 \ \exists N \in \mathbf{N} , \forall n \in \mathbf{N} \ (n \ge N \Rightarrow |u_n - L| < \varepsilon),$$

> soit expliciter la définition d'une suite convergeant vers un réel.

Définition.

Soit (u_n) une suite réelle et soit L un réel ; on dit que (u_n) converge vers L quand n tend vers $+\infty$ si l'une des propriétés (a) (b) (c) équivalentes suivantes est vérifiée.

- (a) Pour tout voisinage V de l, il existe un rang N, tel que u_n appartienne à V pour tout entier n supérieur ou égal à N.
- (b) Tout intervalle ouvert contenant Ll contient tous les termes de la suite sauf pour un nombre fini d'indices.
- (c) Quel que soit $\varepsilon > 0$, il existe N dans N tel que n > N entraîne $|u_n L| < \varepsilon$.

Il est bien évident que l'entier N dépend de la suite (u_n) et de ε .

En langage formalisé:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} \quad (n \ge N \Longrightarrow |u_n - L| < \varepsilon)$$

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Le module «nombres réels, suites et fonctions » et plus spécialement la partie « apprendre, suites numériques »

http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lessuites/3.htm

Quelques remarques

- 1. s'en tenir à la première partie sans expliciter ce que veut dire converge vers L (ou a pour limite L) est un peu court et ne justifiait pas l'intégralité du barême,
- 2. écrire « thermes » d'une suite est excusable à la rentrée d'une cure mais est à éviter en suite.

3) Montrer que toute suite croissante majorée est convergente

C'est un théorème du cours

Théorème.

Soit (u_n) une suite croissante de réels, si (u_n) est majorée, elle est convergente et $\lim_{n\to+\infty}u_n=\sup\{u_n,n\in N\}$

Remarques:

- > un majorant n'est pas forcément la limite (d'ailleurs il y a une infinité de majorants et une seule limite),
- ightharpoonup dire que $u_{n+1} u_n > 0 \Rightarrow u_{n+1} > u_n$ est vrai mais sans grand intérêt et ne doit pas faire croire que l'on avance dans la démonstration.

Démonstration

La suite (u_n) étant majorée, l'ensemble $A = \{u_n, n \in \mathbb{N}\}$ est une partie non vide et majorée de \mathbb{R} . A a donc une borne supérieure .

Posons
$$L = \sup\{u_n, n \in \mathbb{N}\}.$$

Soit $\varepsilon > 0$, d'après la définition de la borne supérieure il existe un entier N tel que

$$L - \varepsilon < u_n \le L$$

la suite (u_n) étant croissante on a alors **pour tout** entier n>N

$$u_n \ge u_N \implies L - \varepsilon < u_N \le u_n \le L$$
.

D'où finalement:

$$\forall \varepsilon > 0 \; , \; \exists N \in \mathbf{N} \; , \forall n \in \mathbf{N} \quad \left(n \geq N \Longrightarrow L - \varepsilon < u_n \leq L \right)$$

et donc $L = \lim_{n \to +\infty} u_n$.

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Le module « nombres réels, suites et fonctions » et plus spécialement la partie « apprendre, suites numériques »

http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lessuites/6 1.htm

Exercice 1

1. Calculer
$$\lim_{x\to 1} \left(\frac{2}{1-x^2} - \frac{3}{1-x^3} \right)$$
.

On peut par exemple travailler sur la forme de la fraction rationnelle (si le facteur x-1 ne se simplifie pas, il n'y aura pas de limite)

$$\frac{2}{1-x^2} - \frac{3}{1-x^3} = \frac{2}{(1-x)(1+x)} - \frac{3}{(1-x)(1+x+x^2)}$$

$$= \frac{1}{(1-x)} \cdot \left(\frac{2}{(1+x)} - \frac{3}{(1+x+x^2)}\right)$$

$$= \frac{1}{(1-x)} \cdot \frac{2+2x+2x^2-3-3x}{(1+x)(1+x+x^2)}$$

$$= \frac{1}{(1-x)} \cdot \frac{2x^2-x-1}{(1+x)(1+x+x^2)}$$

$$= \frac{1}{(1-x)} \cdot \frac{(2x+1)(x-1)}{(1+x)(1+x+x^2)}$$
D'où pour $x \neq 1$: $\frac{2}{1-x^2} - \frac{3}{1-x^3} = -\frac{2x+1}{(1+x)(1+x+x^2)}$
et $\lim_{x \to 1} \left(\frac{2}{1-x^2} - \frac{3}{1-x^3}\right) = -\frac{1}{2}$.

Remarques:

- Dire que l'on a des formes indéterminées ne fait pas de mal mais ne donne pas droit à des points : c'est le but de l'exercice de lever l'indétermination
- > On peut aussi utiliser un développement limité des dénominateurs en 1. A priori l'ordre 1 va suffire puisque la racine 1 est simple.
- Attention: il faut le faire en 1 et non pas en 0 comme dans certaines copies.
- ➤ Le signe a souvent été omis.

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Pour la notion de limite, le module « nombres réels, suites et fonctions », partie « étude locale des fonctions, limite, continuité »

http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lesfonctions_etudelocale/2 1.htm

Testez sur un exercice analogue si vous avez compris.

Calculer
$$\lim_{x\to -2} \left(\frac{2}{-2+x+x^2} - \frac{3}{2+x+2x^2+x^3} \right)$$

Demandez la réponse (code A01) à l'équipe pédagogique de L'UTĚS ou par mail à

lutelmaths@cicrp.jussieu.fr

2. Calculer
$$\lim_{x\to e} \frac{\sin(x) - \sin(e)}{\ln(x) - 1}$$
.

Une démonstration rapide s'obtient en écrivant (pour $x \neq e$)

$$\frac{\sin(x) - \sin(e)}{\ln(x) - 1} = \frac{\sin(x) - \sin(e)}{x - e} \cdot \frac{x - e}{\ln(x) - \ln(e)}$$

et en remarquant (dérivées en e des fonctions sinus et logarithme) que

$$\lim_{x \to e} \frac{\sin(x) - \sin(e)}{x - e} = \cos(e) \text{ et } \lim_{x \to e} \frac{\ln(x) - \ln(e)}{x - e} = \frac{1}{e}, \text{ d'où l'existence de la limite et l'égalité}$$

$$\lim_{x \to e} \frac{\sin(x) - \sin(e)}{\ln(x) - 1} = e \cos(e)$$

Remarques

On peut aussi faire des développements limités à l'ordre 1 en *e* au numérateur et au dénominateur (si on les obtient par la formule de Taylor, on constate que c'est le même calcul qu'avec les dérivées).

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Pour la notion de dérivée, le module « nombres réels, suites et fonctions », partie « étude locale des fonctions d'une variable réelle, continuité, limite, dérivabilité en un point ». http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lesfonctions_etudelocale/3_1.htm

Testez sur un exercice analogue si vous avez compris.

Calculer
$$\lim_{x\to\pi} \frac{x^2 - \pi^2}{\tan(x)}$$

et demandez la réponse (code A02) à l'équipe pédagogique de L'UTĚS ou par mail à

lutelmaths@cicrp.jussieu.fr

1. Former le développement limité à l'ordre 4 en 0 de la fonction

 $f \mathbf{R} \to \mathbf{R} \quad x \mapsto \sin(x)\cos(x)$

Il s'agit d'un produit : on calcule les développements limités en 0 à l'ordre 4 de chacun des facteurs puis on fait le produit des parties principales en ne conservant que les termes de degré au plus 4.

$$\sin(x) = x - \frac{x^3}{6} + x^4 \varepsilon(x)$$
$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^4 \varepsilon(x)$$

d'où

$$\sin(x)\cos(x) = \left(x - \frac{x^3}{6} + x^4 \varepsilon(x)\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + x^4 \varepsilon(x)\right)$$
$$= x - \frac{x^3}{6} - \frac{x^3}{2} + x^4 \varepsilon(x)$$
$$= x - \frac{2x^3}{3} + x^4 \varepsilon(x)$$

2. Former le développement limité à l'ordre 4 en $\pi/4$ de la fonction $f \mathbf{R} \to \mathbf{R} \quad x \mapsto \exp(\cos(x))$

Il s'agit d'une fonction composée : on calcule les développements limités à l'ordre 4 en $\pi/4$ du cosinus et en $\cos(\pi/4) = 1/\sqrt{2}$ de l'exponentielle et on fait le produit de composition des parties principales en ne conservant que les termes de degré au plus 4 .

Développement limité de la fonction cosinus à l'ordre 4 en $\pi/4$: on pose $t = x - \pi/4$ pour se ramener à un développement en 0.

On a alors

$$\cos(x) = \cos(t + \pi/4) = \cos(t)\cos(\pi/4) - \sin(t)\sin(\pi/4)$$

$$= \frac{1}{\sqrt{2}}\cos(t) - \frac{1}{\sqrt{2}}\sin(t)$$

$$= \frac{1}{\sqrt{2}}(1 - \frac{t^2}{2} + \frac{t^4}{24} - t + \frac{t^3}{6} + t^4\varepsilon(t))$$

$$= \frac{1}{\sqrt{2}}(1 - t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}) + t^4\varepsilon(t)$$

Développement limité de l'exponentielle en $1/\sqrt{2}$: on pose $u = y - \frac{1}{\sqrt{2}}$

$$e^{y} = e^{\frac{1}{\sqrt{2}} + u} = e^{\frac{1}{\sqrt{2}}} e^{u} = e^{\frac{1}{\sqrt{2}}} (1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + \frac{u^{4}}{24} + u^{4} \varepsilon(u))$$

Il reste à composer

$$e^{\cos(x)} = e^{\frac{1}{\sqrt{2}}} \left(1 + \frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right) + \frac{\left(\frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right)^2}{2} + \frac{\left(\frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right)^3}{6} + \frac{\left(\frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right)^4}{24} + \left(\frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right)^4 \varepsilon(\frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + t^4 \varepsilon(t)\right)$$

On développe et ne conserve que les termes de degré au plus 4

$$e^{\cos(x)} = e^{\frac{1}{\sqrt{2}}} \left(1 + \frac{1}{\sqrt{2}} \left(-t - \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} \right) + \frac{1}{2} \left(t^2 - t^3 + \frac{t^4}{4} - \frac{2t^4}{6} \right) + \frac{1}{2\sqrt{2}} \left(-t^3 - \frac{3t^4}{2} \right) + \frac{t^4}{24} + t^4 \varepsilon(t) \right)$$

et finalement

$$e^{\cos(x)} = e^{\frac{1}{\sqrt{2}}} \left(1 - \frac{1}{\sqrt{2}}t + \left(-\frac{1}{2\sqrt{2}} + \frac{1}{4}\right)t^2 + \left(\frac{1}{12\sqrt{2}} + \frac{1}{4}\right)t^3 + \left(-\frac{1}{12\sqrt{2}} + \frac{1}{96}\right)t^4 + t^4\varepsilon(t)\right)$$

et

$$e^{\cos(x)} = e^{\frac{1}{\sqrt{2}}} \left(1 - \frac{1}{\sqrt{2}} (x - \pi/4) + \left(-\frac{1}{2\sqrt{2}} + \frac{1}{4}\right) (x - \pi/4)^2 + \left(\frac{1}{12\sqrt{2}} + \frac{1}{4}\right) (x - \pi/4)^3 + \left(-\frac{1}{12\sqrt{2}} + \frac{1}{96}\right) (x - \pi/4)^4 + (x - \pi/4)^4 \varepsilon(x)\right)$$

Pour les courageux (ou inconscients) qui ont voulu utiliser la formule de Taylor (ce qui était licite mais difficile à mener au bout) voici les dérivées de la fonction g et leurs valeurs en $\pi/4$.

Le calcul est fait avec Maple. Pour plus de détails sur l'utilisation de Maple pour du calcul différentiel et spécialement les développements limités, on peut consulter la feuille Maple http://www.math.jussieu.fr/~jarraud/tdmaple/devlim.mws)

> g:=x->exp(cos(x));

$$g := x \rightarrow e^{\cos(x)}$$
> g1:=diff(g(x),x);s1:=subs(x=Pi/4,g1);eval(s1);

$$g1 := -\sin(x) e^{\cos(x)}$$

$$sI := -\sin\left(\frac{1}{4}\pi\right) e^{\cos(1/4\pi)}$$

$$-\frac{1}{2}\sqrt{2} e^{(1/2\sqrt{2})}$$

$$> g2 := \text{diff}(g1,x); s2 := \text{subs}(x=Pi/4,g2); eval(s2);$$

$$g2 := -\cos(x) e^{\cos(x)} + \sin(x)^2 e^{\cos(x)}$$

$$s2 := -\cos\left(\frac{1}{4}\pi\right) e^{\cos(1/4\pi)} + \sin\left(\frac{1}{4}\pi\right)^2 e^{\cos(1/4\pi)}$$

$$-\frac{1}{2}\sqrt{2} e^{(1/2\sqrt{2})} + \frac{1}{2} e^{(1/2\sqrt{2})}$$

$$> g3 := \text{diff}(g2,x); s3 := \text{subs}(x=Pi/4,g3); eval(s3);$$

$$g3 := \sin(x) e^{\cos(x)} + 3\cos(x)\sin(x) e^{\cos(x)} - \sin(x)^3 e^{\cos(x)}$$

$$s3 := \sin\left(\frac{1}{4}\pi\right) e^{\cos(1/4\pi)} + 3\cos\left(\frac{1}{4}\pi\right) \sin\left(\frac{1}{4}\pi\right) e^{\cos(1/4\pi)} - \sin\left(\frac{1}{4}\pi\right)^3 e^{\cos(1/4\pi)}$$

$$= \frac{1}{4}\sqrt{2} e^{(1/2\sqrt{2})} + \frac{3}{2} e^{(1/2\sqrt{2})}$$

$$> g4 := \text{diff}(g3,x); s4 := \text{subs}(x=Pi/4,g4); eval(s4);$$

$$g4 := \cos(x) e^{\cos(x)} - 4\sin(x)^2 e^{\cos(x)} + 3\cos(x)^2 e^{\cos(x)} - 6\cos(x)\sin(x)^2 e^{\cos(x)} + \sin(x)^4 e^{\cos(x)}$$

$$= s4 := \cos\left(\frac{1}{4}\pi\right) e^{\cos(1/4\pi)} - 4\sin\left(\frac{1}{4}\pi\right)^2 e^{\cos(1/4\pi)} + 3\cos\left(\frac{1}{4}\pi\right)^2 e^{\cos(1/4\pi)}$$

$$-6\cos\left(\frac{1}{4}\pi\right) \sin\left(\frac{1}{4}\pi\right)^2 e^{\cos(1/4\pi)} + \sin\left(\frac{1}{4}\pi\right)^4 e^{\cos(1/4\pi)}$$

$$-\sqrt{2} e^{(1/2\sqrt{2})} - \frac{1}{4} e^{(1/2\sqrt{2})}$$

Remarques

Dans les développements limités ne pas oublier d'écrire les epsilons (ou les petit o)

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Le module « développements limités », les sections «apprendre » et « s'exercer, calculs de développements limités ».

http://www.uel.cicrp.jussieu.fr/uel/mathematiques/dev_limites/sexercer/chapitre3/exos_frames/ex1-1.html

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence à l'aide de la fonction

$$f: \mathbf{R}_+ \to \mathbf{R}_+, \quad x \mapsto f(x) = \frac{x^3}{3}$$

par

$$u_{n+1} = f(u_n) = \frac{u_n^3}{3}$$

et la donnée de u₀ strictement positif

1. Etudier les variations et le signe de la fonction auxiliaire g définie sur l'intervalle $[0,+\infty[$ par g(x) = f(x) - x.

La fonction polynomiale g est dérivable, et $g'(x) = x^2 - 1 = (x - 1)(x + 1)$. On en déduit le tableau de variation

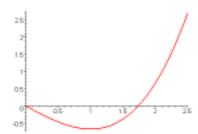
x	0	1	а		$+\infty$
g'(x)	0 -	0		+	
g(x)	0	→-2/3-	0		<u>→</u> +∞
f(x)	0		<u></u>		<u></u> +∞

L'existence et l'unicité de a tel que g(a)=0 sont impliquées par le théorème des valeurs intermédiaires (cf le cours) et la monotonie de g.

A cette question, ou à la suivante, on a besoin de déterminer a, il suffit de résoudre

$$\begin{cases} \frac{a^3}{3} - a = 0 \\ a > 0 \end{cases} \Leftrightarrow \begin{cases} a^3 - 3a = a(a^2 - 3) = 0 \\ a > 0 \end{cases} \Leftrightarrow a = \sqrt{3}$$

On en déduit que $b = f(\sqrt{3}) = \sqrt{3}$.



9

2. Pour quelle valeur de u_0 la suite $(u_n)_{n\in\mathbb{N}}$ est-elle constante ?

La suite $(u_n)_{n\in\mathbb{N}}$ est constante si et seulement si

$$(\forall n \in \mathbf{N}, u_{n+1} = f(u_n) = u_n) \Leftrightarrow (\forall n \in \mathbf{N}, g(u_n) = 0) \Leftrightarrow (\forall n \in \mathbf{N}, u_n = \sqrt{3}).$$

si et seulement si $u_0 = \sqrt{3}$.

3. Discuter suivant la valeur initiale u_0 de la suite, la monotonie et la convergence de la suite $(u_n)_{n\in\mathbb{N}}$

De la question 1 on déduit que

$$u_n < \sqrt{3} \Rightarrow g(u_n) < 0 \Rightarrow u_{n+1} < u_n$$

$$u_n > \sqrt{3} \Rightarrow g(u_n) > 0 \Rightarrow u_{n+1} > u_n$$

On a aussi (vérification immédiate) que

$$u_n < \sqrt{3} \Rightarrow u_{n+1} < \sqrt{3}$$

$$u_n > \sqrt{3} \Longrightarrow u_{n+1} > \sqrt{3}$$

On montre par récurrence (faites-le) que

$$u_0 < \sqrt{3} \Rightarrow \left(\forall n \in \mathbb{N} \quad u_{n+1} < u_n \text{ et } 0 < u_{n+1} < \sqrt{3} \right)$$

$$u_0 > \sqrt{3} \Rightarrow \left(\forall n \in \mathbf{N} \ u_{n+1} > u_n \text{ et } u_{n+1} \ge \left(\frac{u_0}{\sqrt{3}} \right)^n \sqrt{3} \right)$$

On en déduit

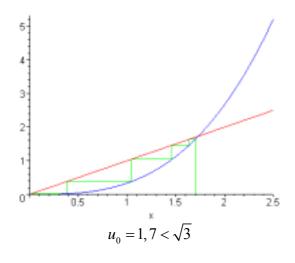
ightharpoonup si $u_0 < \sqrt{3}$, la suite est décroissante, minorée (par 0) donc convergente. La limite L

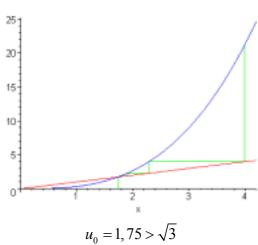
$$\begin{cases} \frac{L^3}{3} = L \\ 0 \le L < \sqrt{3} \end{cases} \Leftrightarrow \begin{cases} L(L^2 - 3) = 0 \\ 0 \le L < \sqrt{3} \end{cases} \Leftrightarrow L = 0$$

donc la suite converge vers 0.

Remarque : comme la suite est décroissante, on a $L \le u_0 < \sqrt{3}$.

- ightharpoonup si $u_0 = \sqrt{3}$ la suite est constante.
- > si $u_0 > \sqrt{3}$ la suite, minorée par une suite géométrique de raison > 1 tend vers + ∞ (en croissant).





Remarques

- Ne pas dire que la suite est constante pour $u_0=0$ (dans l'énoncé, il est supposé $u_0>0$)
- discussion de la monotonie : elle se déduit du signe de g. Une récurrence (ou du moins dire que cela se montre par récurrence) est indispensable.
- La variation de f n'est pas demandée mais elle est utile pour le 3) (et élémentaire).
- > On peut aussi dire quand $u_0 > \sqrt{3}$ que la suite est croissante et que si elle est majorée, elle est convergente vers une limite L telle que

$$\begin{cases} \frac{L^3}{3} = L \\ L > \sqrt{3} \end{cases} \Leftrightarrow \begin{cases} L(L^2 - 3) = 0 \\ L > \sqrt{3} \end{cases}$$

or ce système n'a pas de solution.

L'inégalité stricte vient de ce que comme la suite est croissante, on a $L \ge u_0 > \sqrt{3}$.

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Le module «nombres réels, suites et fonctions » et plus spécialement la partie « apprendre, suites numériques, suites récurrentes ».

http://www.uel.cicrp.jussieu.fr/uel/mathematiques/analyse1/apprendre/lessuites/7.htm.

1. Chercher le PGCD (noté *D*) des polynômes suivants

$$A = X^{4} - 3X^{3} + 3X^{2} - 3X + 2$$

$$B = X^{4} - 3X^{3} + 4X^{2} - 6X + 4$$

On fait la division euclidienne de A par B

puis

$$\begin{array}{c|ccccc}
X^4 - 3X^3 + 4X^2 - 6X + 4 & -X^2 + 3X - 2 \\
-X^4 + 3X^3 - 2X^2 & -X^2 - 2 \\
2X^2 - 6X + 2 & \\
-2X^2 + 6X - 2 & \\
0 & & \\
\end{array}$$

Le dernier reste non nul est donc $-X^2 + 3X - 2$ et, comme le PGCD est unitaire, $D = X^2 - 3X + 2$.

2. Écrire une relation de Bézout entre A, B et D.

De la première division de la question précédente on déduit que A = B - D.

3. Donner une factorisation de A et B en facteurs irréductibles dans $\mathbf{R}[X]$ puis dans $\mathbf{C}[X]$.

La deuxième division de la première question montre que

$$B = (X^2 - 3X + 2)(X^2 + 2).$$

Une autre division donne

$$A = (X^2 - 3X + 2)(X^2 + 1)$$

On remarque que

$$D = (X-2)(X-1)$$

et comme $X^2 + 1$ et $X^2 + 2$ sont des polynômes irréductibles de $\mathbf{R}[X]$ (de degré é à discriminant strictement négatif) on en déduit les factorisations en facteurs irréductibles dans $\mathbf{R}[X]$:

$$A = (X^2 + 1)(X - 1)(X - 2)$$

$$B = (X^2 + 2)(X - 1)(X - 2)$$

puis dans C[X]

$$A = (X+i)(X-i)(X-1)(X-2)$$

$$B = (X + i\sqrt{2})(X - i\sqrt{2})(X - 1)(X - 2)$$

Remarques

- ➤ On attendait un algorithme d'Euclide en 1) puis en 3) une factorisation du PGCD (de degré 2 donc on sait en calculer les racines) puis de *A* et *B* en factorisant les quotients de degré 2 aussi par *D*.
- ➤ On pouvait aussi repérer des racines évidentes, factoriser résoudre la question 3) et en déduire le PGCD question 1) .
- \triangleright De même on pouvait remarquer sans autre formalité que B = A D.

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

Module sur les polynômes et spécialement le chapitre « apprendre, arithmétique dans K[X]» http://www.uel.cicrp.jussieu.fr/uel/mathematiques/polynomes1/apprendre/titre1.htm.

Testez sur un exercice analogue si vous avez compris.

1. Chercher le PGCD (noté *D*) des polynômes suivants

$$A = X^{5} - X^{4} + 4X^{3} - 2X^{2} + 4X$$

$$B = X^{5} + 2X^{3}$$

- 2. Écrire une relation de Bézout entre A, B et D.
- 3. Donner une factorisation de A et B en facteurs irréductibles dans $\mathbf{R}[X]$ puis dans $\mathbf{C}[X]$.

Demandez la réponse (code P02) à l'équipe pédagogique de L'UTĚS ou par mail à

lutelmaths@cicrp.jussieu.fr

Trouver tous les polynômes P à coefficients réels, de degré inférieur ou égal à 4, tels que P(1) = P'(1) = P''(1) = 6 et P(0) = 1

Le fait de connaître la valeur de dérivées successives en 1 incite à utiliser la formule de Taylor en 1.

Puisque P est de degré au plus 4 on a l'égalité

$$P = P(1) + (X - 1)P'(1) + \frac{(X - 1)^2}{2}P''(1) + \frac{(X - 1)^3}{6}P'''(1) + \frac{(X - 1)^4}{24}P''''(1)$$

Posant P'''(1) = a et tenant compte des valeurs indiquées dans l'énoncé :

$$P = 6 + (X - 1)6 + \frac{(X - 1)^2}{2}6 + \frac{(X - 1)^3}{6}6 + \frac{(X - 1)^4}{24}a$$

soit

$$P = 6 + 6(X - 1) + 3(X - 1)^{2} + (X - 1)^{3} + \frac{(X - 1)^{4}}{24}a$$

Prenant la valeur en 0 :

$$1 = P(0) = 6 - 6 + 3 - 1 + \frac{a}{24}$$

qui donne a = -24

On en déduit que

$$P = 6 + 6(X - 1) + 3(X - 1)^{2} + (X - 1)^{3} - (X - 1)^{4}$$

(réponse acceptée) ou en développant

$$P = 1 + 7X - 6X^2 + 5X^3 - X^4$$

Il y a donc une solution unique.

Remarques

- La recherche des coefficients de *P* en résolvant un système de 5 équations à 5 inconnues, un peu fastidieuse et longue, permettait d'obtenir tous les points de la question (la perte de temps pénalisait déjà suffisamment).
- Un erreur de logique à éviter : traiter à part le cas des polynômes strictement inférieur à 4 (de degré 3, 2,...). Ce sont des polynômes de degré au plus 4 avec le coefficient du terme X^4 nul, donc s'il y en a on les trouve en résolvant le système ou en appliquant la formule de Taylor et si certains en trouvent c'est parce qu'ils oublient des conditions...

Références dans Université en Ligne (http://www.uel.cicrp.jussieu.fr)

- Module sur les polynômes et spécialement la rubrique « apprendre, fonctions polynômes, formule de Taylor, étude des polynômes à coefficients réels ou comlexes» http://www.uel.cicrp.jussieu.fr/uel/mathematiques/polynomes1/apprendre/fa2.32/cours03.htm.
- ➤ A la rubrique « s'exercer, fonctions polynômes », un exercice voisin est détaillé avec indications de méthode

 http://www.uel.cicrp.jussieu.fr/uel/mathematiques/polynomes1/sexercer/fe2.321/index.htm.

Testez sur un exercice analogue si vous avez compris.

Trouver tous les polynômes P à coefficients réels, de degré inférieur ou égal à 5, tels que

$$P(0) = P'(0) = 2$$
, $P''(0) = P'''(0) = -12$, $P''''(0) = 72$ et $P(0) = 2$

Demandez la réponse (code P02) à l'équipe pédagogique de L'UTES ou par mail à <u>lutelmaths@cicrp.jussieu.fr</u>