Université Pierre et Marie Curie DEUG MIAS premier niveau Année 1999-2000

Examen du module de mathématiques 19 juin 2000 Durée de l'épreuve : 3 heures

EXERCICE 1

Soit *m* un paramètre réel et *A* la matrice définie par : $A = \begin{pmatrix} m & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & m \end{pmatrix}$

1) Calculer $\det A$ en fonction $\det m$.

On se donne $(b_1, b_2, b_3) \in \mathbb{R}^3$. On considère le système :

$$\begin{cases} mx - y + z &= b_1 \\ y + z &= b_2 \\ x &+ mz &= b_3 \end{cases}$$

- 2) a) A quelles conditions sur le paramètre m ce système admet il une solution unique? Le résoudre dans ce cas et calculer A^{-1} .
- 2) b) Discuter et résoudre le système dans les autres cas.

EXERCICE 2

Soit E l'espace vectoriel sur $\mathbf R$ des applications de $\mathbf R$ dans $\mathbf R$. Soient e_1, e_2, e_3 et e_4 quatre éléments de E

définis par : $\forall x \in \mathbf{R} \quad e_1(x) = \sin x \operatorname{sh} x \quad , \quad e_2(x) = \sin x \operatorname{ch} x$ $e_3(x) = \cos x \operatorname{sh} x \quad , \quad e_4(x) = \cos x \operatorname{ch} x$

1) Montrer que la famille (e_1, e_2, e_3, e_4) est une famille libre de E.

Soit $F = \text{Vect}(e_1, e_2, e_3, e_4)$. On considère l'application linéaire $u : F \to E$ définie par : $\forall y \in F$, u(y) = y'' + 2y' + 2y où y' et y'' désignent les fonctions dérivées premières et secondes de y.

- 2) a) Calculer $u(e_1), u(e_2), u(e_3), u(e_4)$ et en déduire que u est un endomorphisme de F.
- 2) b) Ecrire la matrice de u dans la base (e_1, e_2, e_3, e_4) de F.
- 3) Donner une base de $\operatorname{Im} u$ et de $\ker u$.
- 4) Montrer que $F = \ker u \oplus \operatorname{Im} u$.

EXERCICE 3

Trouver toutes les solution sur $]0,+\infty[$ de l'équation différentielle

$$xy' + y = e^x \sin x$$

1

EXERCICE 4

1) Décomposer en éléments simples dans $\mathbf{R}(X)$ la fraction rationnelle :

$$F = \frac{18}{(X-1)(X^2 + 2X + 3)}$$

2) Calculer
$$\int_{-1}^{0} F(x) dx$$

EXERCICE 5

On considère la fonction g définie par :

$$g(x) = \int_{1}^{e^{x}} \sin \frac{1}{t} dt$$

- 1) Quel est le domaine de définition de g?
- 2) Montrer que pour tout x appartenant à ce domaine de définition

$$g'(x) - g''(x) = \cos(e^{-x})$$

3) On considère l'équation différentielle

$$(E) -y" + y' = \cos(e^{-x})$$

- 3) a) Résoudre l'équation homogène associée.
- 3) b) Trouver toutes les solutions de (E) qui vérifient y(0) = 0
- 4) Montrer que pour toute solution y de (E) qui vérifie y(0) = 0, il existe un réel A tel que

$$\forall x \ge 0 \quad \frac{y(x)}{e^x} \le A$$