Université Pierre et Marie Curie. Licence Sciences et Technologies. MIME

Examen de l'UE LM 125. Session de Juin 2005. Durée de l'épreuve : 2 heures.

L'usage de tout document, de calculatrice, de téléphone portable ou de baladeur est interdit.

Exercice I.

Dans l'espace vectoriel $\mathbb{R}_3[X]$ des polynômes de degré au plus 3, on considère les quatres polynômes P_0, P_1, P_2, P_3 définis par

$$P_0(X) = 1$$
, $P_1(X) = X - 1$, $P_2(X) = (X - 1)^2$ et $P_3(X) = (X - 1)^3$.

- a) Montrer que la famille (P_0, P_1, P_2, P_3) est une base de $\mathbb{R}_3[X]$.
- b) Soit $P(X) = X^3 + aX^2 + bX + 1$, a, b réels. Déterminer les coordonnées de P dans la base (P_0, P_1, P_2, P_3) . On pourra utiliser les dérivées successives de P en 1.
 - c) Déterminer a et b tels que P ait une racine d'ordre au moins 2 en 1.
- d) Montrer que $((X-1)^2, (X-1)^3, (X-2)^2, (X-2)^3)$ est une base de $\mathbb{R}_3[X]$. En déduire que tout élément de $\mathbb{R}_3[X]$ s'écrit, et de façon unique, comme somme d'un polynôme ayant 1 pour racine double (au moins) et d'un polynôme ayant 2 pour racine double (au moins).

Exercice II.

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{ccc} 3 & -4 & 8 \\ 5 & -6 & 10 \\ 1 & -1 & 1 \end{array}\right)$$

- 1) Déterminer dim ker f dimension du noyau de f ainsi qu'une base de ker f.
- 2) Calculer le polynôme caractéristique de f. Prouver que l'endomorphisme f est diagonalisable.
 - 3) Déterminer une matrice inversible P telle que $P^{-1}AP$ soit diagonale.
 - 4) Calculer $A^2 + A$.
 - 5) Soit $n \ge 2$ un entier, déterminer le reste de la division de X^n par $X^2 + X$.
 - 6) En déduire A^n en fonction de n.

Tournez la page s'il vous plaît.

Exercice III.

On considère les matrices
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 0 & 1 \end{pmatrix}$$
 et $R = \begin{pmatrix} 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. On pose

$A = M \times R$.

- 1) Déterminer le rang des matrices M et R.
- 2) Sans effectuer le produit $A = M \times R$, déterminer le rang de la matrice A.
- 3) Changer un seul élément de la matrice R pour augmenter le rang de A.